The Bionics Institute vision realised 

The Bionics Institute is delighted to announce a $23.5m (AUD) investment by Hong Kong-based China Huarong International Holdings Ltd and State Path Capital Limited to develop and commercialise the next generation bionic eye.

This journey began twelve years ago when Professor Rob Shepherd from the Bionics Institute approached The Ian Potter Foundation to support our 'blue sky’ research to develop a bionic eye: an implant capable of restoring vision to people suffering degenerative eye diseases. This initial funding allowed early proof-of-concept research and two years later, John T Reid Charitable Trusts provided a significant grant shared with our clinical colleagues from the Centre for Eye Research Australia (CERA) to support the Bionic Eye Biocompatibility and Efficacy Feasibility Study.

The confidence of these philanthropic organisations in the Bionics Institute was justified when in 2010 the Bionic Eye project was awarded a $50m federal grant from the Australian Research Council to fund an Australian-wide consortium (Bionic Vision Australia, BVA) of biomedical engineers, surgeons and scientists to bring a prototype bionic eye device to early clinical trial.  The commercial arm of BVA, Bionic Vision Technologies, today announced that it has raised $23.5m to move the bionic eye closer to the marketplace and into the hands of clinicians and patients.

Bionics Institute Director, Professor Rob Shepherd said, “I would like to take this opportunity to acknowledge the dedication and skills of our team of researchers and engineers at the Bionics Institute and our collaborators in Bionic Vision Australia, in particular our clinical partners at the Centre for Eye Research Australia.  This technology is about to revolutionise the clinical management of patients with late stage retinitis pigmentosa and within a decade I expect the bionic eye will have made a significant impact in the clinical management of other severe forms of visual impairment associated with the retina.”

The Bionics Institute was responsible for the design, manufacture, and safety testing of the prototype bionic eye, as well as the testing the patients’ perceptions in our purpose-built laboratory. Since the successful clinical trial of our prototype bionic eye (2012-2014: as part of BVA), our researchers have been working on all components of the bionic eye to improve the technology and the visual experience of recipients in preparation for the clinical trial of the next generation device, due to commence later this year.

The bionic eye aims to restore vision to those suffering from blindness caused by the loss of the light-sensitive cells of the retina. This technology electrically stimulates the surviving neurons within the retina via an implant containing an array of stimulating electrodes. The artificial vision will be used for tasks of orientation and mobility, as well as improving independence in activities of daily living.

Learn more about the bionic eye

Australian Research Council announcement 

The Bionics Institute gratefully acknowledges the contributions of numerous trusts and foundations, individual donors and government agencies for making this journey possible, including:

     Australian Research Council
     National Health and Medical Research Council
     The Ian Potter Foundation
     John T Reid Charitable Trusts
     Neville & Di Bertalli
     John & Janet Calvert-Jones
     John & Jennifer Prescott
     GJ & MA Jorgenson
     Jack & Robert Smorgon Families Foundation
     Ramaciotti Foundations

Bionic Vision Australia (2010 - 2016) was a national consortium of researchers from the: Bionics Institute, Centre for Eye Research Australia, National ICT Australia (now Data61), University of Melbourne and University of New South Wales, with the National Vision Research Institute, Royal Victorian Eye and Ear Hospital and University of Western Sydney as project partners.

ACMD partners’ type 1 diabetes funding success

Two partners in the Aikenhead Centre for Medical Discovery were recently awarded grants worth more than $2 million in early 2017.

The lead researchers on the two grants, Associate Professor Stuart Mannering (St Vincent’s Institute) and Dr Sybil McAuley (St Vincent’s Hospital Melbourne), received funding for their research into type 1 diabetes. Type 1 diabetes is an autoimmune disease that develops when the body’s immune cells mistakenly destroy the insulin-producing cells contained within the pancreas.

Associate Professor Stuart Mannering and his collaborator Professor Ed Stanley, from Murdoch Childrens Research Institute (MCRI), were awarded a $1.5 million Innovation Award from the Type 1 Diabetes Clinical Research Network (T1DCRN). The T1DCRN is a clinical research program led by JDRF Australia and funded by a Special Research Initiative through the Australian Research Council (ARC).

The Innovation Award team comprises Associate Professor Stuart Mannering (SVI), Professor Ed Stanley (MCRI), Dr Alisha Oshlack (MCRI), Dr Colleen Elso (SVI), Professor Andrew Elefanty (MCRI), Associate Professor Helen Thomas (SVI), Professor Tom Kay (SVI) and Professor Fergus Cameron from The Royal Children’s Hospital Melbourne. Their project is aimed at reconstructing the immune response that cause type 1 diabetes, which will allow the researchers to dissect exactly how the disease develops.

In 2015, a team from SVI led by Associate Professor Mannering and Professor Tom Kay, pioneered techniques to isolate immune cells from the pancreas of organ donors who had suffered from type 1 diabetes. This important breakthrough allowed them to analyse immune cells from the ‘scene of the crime’. MCRI’s Professors Ed Stanley and Andrew Elefanty are world-renowned experts in the field of stem cells; they’ve developed techniques that will allow the team to ‘grow’ insulin-producing cells from the stored blood of the original organ donor. These cells will be the ‘victims’ in the re-enactment, allowing the group to study the process of cell killing in type 1 diabetes in a powerful new way.

“Ultimately this work will reveal, for the first time, how and why the immune system kills the insulin-producing cells in people who develop type 1 diabetes. This will allow us to develop ways to measure this ‘bad’ immune response in healthy people who may be developing type 1 diabetes. Then, once we can see the crime unfolding we will be able to step in and stop it before it is too late.”

Dr Sybil McAuley, from Melbourne University’s Department of Medicine and St Vincent’s Hospital Melbourne, was awarded an Early-Career Patient-Oriented Diabetes Research Award by JDRF International. The Award is valued for up to $750,000, for up to 5 years.  

Dr McAuley is spearheading a project that includes four studies involving adults with type 1 diabetes.

Dr McAuley explains, “The goal of the first three studies is to determine whether artificial pancreas use in a free-living environment has benefits over conventional diabetes therapy with insulin injections and pumps. These studies will involve a general adult group, a group of older people, and a sub-group of people with reduced warning signs of low blood glucose levels. The goal of the fourth study is to assess how the artificial pancreas device performs when challenged by different types of exercise, and whether this performance can be improved with extra information, in addition to glucose levels, such as relating to physical and biochemical changes which occur with exercise.”

An artificial pancreas is a device that automates blood glucose management, by measuring glucose levels and automatically adjusting the amount of insulin delivered.

“I am hopeful that this project will provide new and useful information about the role of an artificial pancreas in helping to achieve automatic safe and effective control of blood glucose levels in people with type 1 diabetes. There will also be a greater understanding of how these improvements in blood glucose levels, which may be brought about by this new technology, are linked to improvements observed in the physical and emotional state of people treated with an artificial pancreas.

“The information provided will also help to inform people with diabetes how to best use these devices, and their health professionals on how best to care for people using these devices.

“Finally, the research will explore potential inputs in addition to glucose that may improve performance of an artificial pancreas when challenged with exercise.”

BioFab3D@ACMD recipient of MTPConnect funding


BioFab3D@ACMD is one of 14 national projects to receive funding over two years from MTPConnect - the Medical Technologies and Pharmaceuticals Industry Growth Centre. These projects could also leverage as much as $32 million in industry partner funds.

Funding is via MTPConnect’s Project Fund Program, a "competitive, minimum dollar-for-dollar matched funding program that aims to invest in big, bold ideas to boost the innovation, productivity and competitiveness of Australia’s MTP sector."

Sue MacLeman, CEO of MTPConnect, said, “The MTP sector has a fantastic opportunity for growth, but is currently hindered by constraints including a lack of collaboration between business and research, skills shortages, the need for more focused funding and investment, and the need for more streamlined and harmonised regulatory and market access frameworks. There also needs to be a focus on globally competitive incentives and long-term policy vision and stability. The selection panel has chosen these 14 projects because they creatively address many of these barriers and have the potential to have a major impact on the sector.”

MTPConnect’s Project Funds have been made available as part of the Australian Government’s $250 million Industry Growth Centres Initiative.

For a full list of successful applicants and to see the full media release, visit MTPConnect.

New BioFab3D@ACMD


Imagine a future in which joints and limbs damaged through cancer or trauma could be rebuilt. Where the best surgeons, biomedical engineers, biologists and robotics experts come together with industry under one roof to give patients faced with amputation a fully functioning limb so they can walk, work or hold a loved one again.

St Vincent's Hospital Melbourne and our partners, University of Melbourne, University of Wollongong, RMIT University and Swinburne University of Technology, are at the forefront of the 3D bioprinting revolution. Together we are building BioFab3D@ACMD to change the landscape of healthcare as we know it.

BioFab3D@ACMD will be Australia's first robotics and biomedical engineering centre, embedded within a hospital. Researchers, clinicians, engineers and industry partners will work alongside each other with a vision to build biological structures such as organs, bones, brain, muscle, nerves and glands: almost anything that requires repair through disease and physical trauma.

Be part of this revolution.


Robotic arm that could give amputees the sensation of touch being tested in Melbourne

A robotic arm that could result in amputees regaining their sense of touch and increased movement is the latest breakthrough for Melbourne researchers trying to develop prosthetic limbs that work "like normal".


The joint-project between St Vincent's Hospital's Aikenhead Centre for Medical Discovery and Melbourne University is looking at the way the arm and brain signals communicate.

They have been able to send brain signals to the robotic arm, but now are looking at how to return those signals to give the sensation of touch.

Professor Peter Choong from St Vincent's Hospital said these new developments brought hope to amputees.

"It's really very exciting. If you're a patient who has lost a limb or part of a limb, something like this holds out hope for perhaps rebuilding them, allowing them to function much more normally than they do today," Professor Choong said.

The research has been ongoing for a number of years, but scientists believe they are now even closer to simulating a "normal" arm.

"We already have amazing developments in prosthetic limbs, and this research is more about allowing a person to have feel control on that limb, just like it were a normal human limb," Professor Choong said.

They hope to have the next breakthrough in the next couple of years as they understand how the brain reads and interprets signals.

Professor Choong said this latest step was a perfect example of the need for more scientific funding.

"There is a lot to be gained from science, the chief scientific officer's report shows that we contribute considerably to Australia's intellectual and economical wealth, and I think this is an area desperately in need for support from both federal and state governments."

ABC Online


Melbourne team developing robotic arm which could restore sensation of touch to amputees

May 28, 2016: The discovery could help return full movement and the sense of touch to amputees and aid recovery for patients with paralysis. Read more at

May 28, 2016: The discovery could help return full movement and the sense of touch to amputees and aid recovery for patients with paralysis.

Researchers from the University of Melbourne believe they have discovered a way to help amputees and stroke victims, developing a robotic arm which will allow users to experience the sensation of touch.

The discovery could help return full movement and the sense of touch to amputees and aid recovery for patients with paralysis.

Research into the development is being overseen by the St Vincent’s Hospital-based Aikenhead Centre for Medical Discovery.

St Vincent’s Director for Orthopaedics Peter Choong said a prototype arm would be developed based on research and technology that allowed for an enhanced sensory element, which could restore the sensation of touch.

It will expand upon current robotic limbs that use electrodes – or “buzzes and clicks” – to assist a person’s senses, pushing boundaries in transmitting messages from the brain directly to the arm, Prof. Choong said.

The enhanced limb would function by “using the patient’s own nerves and tissue engineering, muscle and nerve engineering and hooking it up to the artificial limb to act in a normal way,” he told

“We’re trying to build up something that can also feel and perceive strength and pressure, feeding it back to the patient through an artificial means.

"What we really want is for the machine to talk back to the brain and that's where a lot of the science is."

University of Melbourne robotics engineer Denny Oetomo told 9NEWS the team working on the research don't think of the arm as a "tool".

"Essentially it would be a limb rather than a tool," he said.

The Aikenhead Centre combined forces with engineers from the University of Melbourne and the University of Wollongong to use 3D printing to create microchips for communication between limb tissues and electrodes. The chips allow movement messages to pass from the brain to the robotic arm.

A prototype will be developed by the University of Melbourne within the next year. It builds on the work of St Vincent’s Hospital neurologist Mark Cook, who decoded the signals of the brain to be able to control complex robotics.

Prof. Cook described the process as “turning thoughts into mechanical action”.

While there is no indication of costs for individual models, Prof. Choong said the outcome would be priceless.

“It will be costly, but for patients, losing an arm is costly,” he said.

The collaborative group is pushing for an Aikenhead Centre for Medical Discovery (ACMD) to be built, which would bring together leading research centres including St Vincent’s, University of Melbourne, St Vincent’s Institute of Medical Research, Bionics Institute, O’Brien Institute, Australian Catholic University, University of Wollongong, Centre for Eye Research Australia, RMIT University, Royal Victorian Eye and Ear Hospital, and Swinburne University.

The proposed centre would continue developing biomedical solutions, and would be built on the corner of Nicholson Street and Victoria Parade for $180 million.

Researchers hope to continue their developments to include prosthetic legs, and technology to help people who have been affected by incontinence.

The proposal has seen leading centres chip in $60 million, along with a further $60 million pledged by the state government.

The team are now urging the federal government to follow suit.

“We’re now looking for the federal government to put their money where their mouth is – it says it’s in for innovation, that’s what it has to do,” he said.

Nine News Online

Researchers give type 1 diabetics new hope

Dr Stuart Mannering from St Vincent's Institute of Medical Research said the goal was to design a vaccine for type 1 diabetes. Photo: Eddie Jim- Image courtesy of the Age Read more: Follow us: @smh on Twitter | sydneymorningherald on Facebook  

Dr Stuart Mannering from St Vincent's Institute of Medical Research said the goal was to design a vaccine for type 1 diabetes. Photo: Eddie Jim- Image courtesy of the Age

Read more:
Follow us: @smh on Twitter | sydneymorningherald on Facebook

Rosina Pavlovic isn't overstating things when she says her son Dane's diabetes dominates her life and that of her family.

"It's huge, it consumes our life," she said.

Cooking at home when the meal can be tailored is one thing. But going out for dinner invariably means counting carbs before consuming. If it's pizza, Dane's favourite meal, the thickness of the base, size of the slices and topping ingredients are closely scrutinized.

Read the full article in the link below.



ACMD Research Week

Thank you to all our researchers, our ACMD collaborators, visitors and special guests, for helping to make ACMD Research Week such a wonderful success! The talents of our hardworking medical researchers was on display, and it was extremely impressive. The week involved a public debate, a Nobel Laureate, an art prize, poster display, and a series of workshops and presentations. The campus was abuzz, and research was rightly at the centre.