ACMD partners’ type 1 diabetes funding success

Two partners in the Aikenhead Centre for Medical Discovery were recently awarded grants worth more than $2 million in early 2017.

The lead researchers on the two grants, Associate Professor Stuart Mannering (St Vincent’s Institute) and Dr Sybil McAuley (St Vincent’s Hospital Melbourne), received funding for their research into type 1 diabetes. Type 1 diabetes is an autoimmune disease that develops when the body’s immune cells mistakenly destroy the insulin-producing cells contained within the pancreas.

Associate Professor Stuart Mannering and his collaborator Professor Ed Stanley, from Murdoch Childrens Research Institute (MCRI), were awarded a $1.5 million Innovation Award from the Type 1 Diabetes Clinical Research Network (T1DCRN). The T1DCRN is a clinical research program led by JDRF Australia and funded by a Special Research Initiative through the Australian Research Council (ARC).

The Innovation Award team comprises Associate Professor Stuart Mannering (SVI), Professor Ed Stanley (MCRI), Dr Alisha Oshlack (MCRI), Dr Colleen Elso (SVI), Professor Andrew Elefanty (MCRI), Associate Professor Helen Thomas (SVI), Professor Tom Kay (SVI) and Professor Fergus Cameron from The Royal Children’s Hospital Melbourne. Their project is aimed at reconstructing the immune response that cause type 1 diabetes, which will allow the researchers to dissect exactly how the disease develops.

In 2015, a team from SVI led by Associate Professor Mannering and Professor Tom Kay, pioneered techniques to isolate immune cells from the pancreas of organ donors who had suffered from type 1 diabetes. This important breakthrough allowed them to analyse immune cells from the ‘scene of the crime’. MCRI’s Professors Ed Stanley and Andrew Elefanty are world-renowned experts in the field of stem cells; they’ve developed techniques that will allow the team to ‘grow’ insulin-producing cells from the stored blood of the original organ donor. These cells will be the ‘victims’ in the re-enactment, allowing the group to study the process of cell killing in type 1 diabetes in a powerful new way.

“Ultimately this work will reveal, for the first time, how and why the immune system kills the insulin-producing cells in people who develop type 1 diabetes. This will allow us to develop ways to measure this ‘bad’ immune response in healthy people who may be developing type 1 diabetes. Then, once we can see the crime unfolding we will be able to step in and stop it before it is too late.”

Dr Sybil McAuley, from Melbourne University’s Department of Medicine and St Vincent’s Hospital Melbourne, was awarded an Early-Career Patient-Oriented Diabetes Research Award by JDRF International. The Award is valued for up to $750,000, for up to 5 years.  

Dr McAuley is spearheading a project that includes four studies involving adults with type 1 diabetes.

Dr McAuley explains, “The goal of the first three studies is to determine whether artificial pancreas use in a free-living environment has benefits over conventional diabetes therapy with insulin injections and pumps. These studies will involve a general adult group, a group of older people, and a sub-group of people with reduced warning signs of low blood glucose levels. The goal of the fourth study is to assess how the artificial pancreas device performs when challenged by different types of exercise, and whether this performance can be improved with extra information, in addition to glucose levels, such as relating to physical and biochemical changes which occur with exercise.”

An artificial pancreas is a device that automates blood glucose management, by measuring glucose levels and automatically adjusting the amount of insulin delivered.

“I am hopeful that this project will provide new and useful information about the role of an artificial pancreas in helping to achieve automatic safe and effective control of blood glucose levels in people with type 1 diabetes. There will also be a greater understanding of how these improvements in blood glucose levels, which may be brought about by this new technology, are linked to improvements observed in the physical and emotional state of people treated with an artificial pancreas.

“The information provided will also help to inform people with diabetes how to best use these devices, and their health professionals on how best to care for people using these devices.

“Finally, the research will explore potential inputs in addition to glucose that may improve performance of an artificial pancreas when challenged with exercise.”